
 1

 

 

 

 

Automation and Unemployment 

Does the academic debate support the belief that 4.0-

technologies will lead to mass unemployment? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ole Lee 



 2

 

 

Table of Contents 

1. Introduction .......................................................................................................................................... 1 

1.1 Hypothesis and methodology .............................................................................................. 2 

2. A short history of automation .......................................................................................................... 3 

3. A comparison of two studies ........................................................................................................... 7 

3.1 Fry, Osborne, and the occupation-based approach ........................................................... 7 

3.2 Arntz et al. and the task-based approach ......................................................................... 11 

4. Predicting the effect of automation on employment ............................................................... 15 

4.1 Technological diffusion ..................................................................................................... 15 

4.2 Induced job creation .......................................................................................................... 18 

5. Conclusion .......................................................................................................................................... 19 

6. Appendix ............................................................................................................................................. 20 

7. Literature ............................................................................................................................................. 22 

 

 

 

 

 

 

 

 

 

 



 1

1. Introduction  

 

During my research on the Fourth Industrial Revolution, I stumbled upon 

conflicting numbers regarding the impact of modern technologies on 

employment. The question of how susceptible jobs are to computerization and 

the future of employment appears to be a point of major contention within this 

line of research. After having taken a more detailed look at the research on the 

subject, I came to the conclusion that much of the public debate in Germany 

surrounding technological development and unemployment has been 

characterized by a high level of anxiety, often exaggerated by the circulation of 

intimidating numbers without proper context. Historically, concerns over 

automation and the possibility of induced unemployment are not new. Early 

examples include the “Luddite” riots that took place in England between 1811 

and 1816, when new machines were introduced in the wool-finishing trade, 

causing workers to riot in an attempt to prevent the employment of these new 

technologies.  More recently, an article published by the public intellectual David 

Precht claims that approximately half of all currently existing jobs will be wiped 

out by 2030 (Precht/Broy 2017). The underlying data for this claim, among 

many others, is derived from a study by Carl Benedikt Frey and Michael A. 

Osborne, who place 47 percent of total US employment in a “high risk” category 

– i.e., jobs that can be expected to be automated relatively soon. The findings of 

Frey/Osborne stand in stark contrast to other studies that come to different 

conclusions about the susceptibility of jobs to automation. There is also much 

disagreement about the various factors that determine and influence how 

automation will progress in the future. While the past decades have witnessed 

an enormous rise in computing power, coupled with a growing availability of big 

data and significant technical advances in areas such as Machine Learning 

(ML), these developments have not led to employment declines (see for 

example: Arntz et al. 2019: 20-21). However, labor markets in most advanced 

economies have been undergoing major changes, with increasing shares of 

both high- and low-paid jobs at the expense of traditional middle-class, routine-

intensive occupations.  
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Simultaneously, the boundaries of what can be automated are continuing to 

shift, with automation methods no longer being limited to problems requiring 

algorithms with well-defined steps. As a result, it remains unclear how labor 

markets will develop in the near future. 

 

1.1 Hypothesis and methodology 

 

This paper seeks to a) contrast the widespread fears about technology-induced 

unemployment with the scientific debate, and b) to analyze how the nature of 

technological change within production processes is often misunderstood as the 

simple replacement of labor with capital. The first chapter will put forth a short 

history of automation and computerization in order to contextualize the changes 

workers are facing today. The second chapter explores the study conducted by 

Frey/Osborne, its findings and its methodology. In addition, another study will 

be analyzed in order to contrast the different methods and conclusions. This 

chapter aims to, at least partially, explain the differences between the different 

numbers and to highlight the problems in applying the methodology of 

Frey/Osborne to the case of the German labor market. The last chapter will 

attempt to capture the different factors and considerations involved in predicting 

how new technologies will affect automation at the workplace. The goal of this 

chapter is to show that automation does not simply imply a replacement of labor 

by capital, but rather that there are much more nuanced processes at work that 

contribute to a change in the structure of the labor market rather than mass-

unemployment. The hypothesis of this paper is as follows:  

 

“The current scientific debate does not provide evidence for the 

widespread belief that technological development will lead to mass 

unemployment. Automation, currently and despite recent advancements, 

still has its limits.” 

 

The inquiry into the future of labor in an increasingly computerized world is 

important because automation affects workers, their lives, and their families. 

Furthermore, policymakers need to understand the processes at work in order 
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to sufficiently prepare for the significant changes that will inevitably affect the 

composition of labor markets. 

 

2. A short history of automation 

 

Throughout history, technological change and its capacity for economic 

disruption and displacement has caused humans to worry about their own 

impending uselessness. From the Industrial Revolution onward, the debate 

among prominent economists in Britain centered on how technological progress 

would affect workers and whether technological innovation, including its 

capacity for economic disruption, would be worthwhile in the long run.1 In his 

Principles of Political Economy and Taxation, David Ricardo concluded that 

while the application of new technologies and the resulting productivity 

increases should be viewed as a general good, the “substitution of machinery 

for human labour [might] render the population redundant and deteriorate the 

condition of the labourer [sic!]” (Ricardo 1817: 282). However, as did most of his 

contemporaries, Ricardo distinguished temporary dislocations of labor from 

possible long-run employment effects. Similarly, Karl Marx, albeit from a 

different perspective, argued that although technological unemployment 

contributed to the immiseration of workers in the short run, it would eventually 

lead to widespread prosperity (Mokyr 2015: 34). Others, such as the British 

writer Thomas Mortimer, decried the machines that “would exclude the labour of 

thousands of useful workmen [sic!]” (Mortimer 1772: 72).  

 

The major innovations that drove the Industrial Revolution can be divided into 

four main groups: power technology, metallurgy, textiles, and a “miscellaneous 

category of other industries and services” (Mokyr 1990: 210). These 

technologies greatly contributed to the increased mechanization and “deskilling” 

of production. Whereas many aspects of manufacturing previously required 

skilled artisans, work could now be broken down into smaller, specialized, 

components that required less skill but more workers to perform (Braveheart 

1974: xvi). Furthermore, developments in continuous-flow production enabled 
                                                 
1
 The Industrial Revolution is usually dated between 1760 and 1830 (Mokyr 1990: 207).  
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workers to remain stationary while completing different tasks using specialized 

tools. Mass produced individual and interchangeable components could now be 

assembled into complex products through a set sequence of operations. Yet 

while the first assembly-line was documented in a biscuit factory in Deptford, 

Britain in 1804, it was not until the late nineteenth century that continuous-flow 

processes were adopted on a large scale by corporations such as the Ford 

Motor Company in the US (Mokyr 1990: 337). As steam and waterpower 

technologies as a power source improved over the course of the nineteenth 

century, production facilities grew larger in size and productivity gains were 

steadily realized through the combination of labor and capital. The general 

pattern characterizing the late nineteenth century can be summed up as follows: 

physical capital complemented unskilled labor instead of replacing it 

(Fry/Osborne 2013: 9). These developments were accompanied by both 

resistance and a shift in attitudes towards technological innovation, particularly 

in Britain.2 Overall, the literature suggests that although economic displacement 

did occur, large segments of the working population, particularly unskilled 

workers, benefitted from mechanization, as is evidenced by the gradual 

improvements in real wages of British workers during this period (Feinstein 

1998: 649).3 Finally. the evidence does not demonstrate that technological 

unemployment actually occurred on a large scale in Britain (Mokyr et al. 2015: 

34).  

 

A shift took place with the transition into the twentieth century. The diffusion of 

electricity as a source of power and the replacement of traditional 

manufacturing production by mechanized assembly lines reduced the demand 

for unskilled manual workers with certain occupational tasks. Electrification 

allowed many stages of the production process to be automated. Whereas 

traditional assembly lines, characterized by a strong division of labor, required 

large numbers of relatively unskilled human operatives with specialized tools, 

                                                 
2
 Mokyr et al. compare the better-known British protests, like the Luddite (1811-16) and Captain 

Swing (1830-32) riots to the “Occupy Wall Street” movement and argue that the role of these 
upheavals has been greatly exaggerated (Mokyr et al. 2015: 34).  
 
3
 Skilled male craftsmen in particular were displaced by the introduction of machinery, by 

changes in the organization of production, and by the rise in female employment in traditional 
male occupations (Feinstein 1998: 651).  
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the introduction of more complex machinery increased the demand for skilled 

blue-collar workers (Fry/Osborne 2013: 10). In addition, the introduction of 

typewriters, calculators and mimeo machines reduced the costs of information 

processing tasks and contributed to a growing share of white-collar 

nonproduction workers, rapidly increasing the importance of clerical 

occupations. As Acemoglu argues, these technical changes favored more 

skilled workers, contributing to a sharp increase in wage inequality (Acemoglu 

2002: 7). Morgan and Katz find that between 1850 and 1910, in the US, there 

was more growth in high skill jobs and relatively less decline in low skill jobs, 

compared to middle skill jobs – a process they call “hollowing out”. In other 

words, there is a discontinuity in the impact of capital on the demand for skilled 

labor between the nineteenth and twentieth century (Katz/Morgan 2013: 2). 

However, even though certain occupations and occupational tasks were 

eliminated during this period, the overall demand for labor did not decrease.  

 

New fears about mass unemployment in the US were stoked by the so-called 

Computer Revolution that began with the introduction of commercial computers 

in the 1960s.4 The cost per computation steadily declined between 1945 and 

1980 and the first industrial robots were introduced in the 1960s. Airplane 

reservations could be completed using self-service technology by the 1970s, 

telephone operators became obsolete, and by 1980 bar-code scanners and 

cash machines were being employed on a large scale throughout the retail and 

banking industries (Gordon 2012: 11). The first personal computers were made 

available in the early 1980s and their capacity to process words and create 

spreadsheets eliminated repetitive typing and enabled repetitive calculations to 

be automated. Concerns over automation and joblessness during the 1950s 

and early 1960s were so prevalent that in 1964, President Lyndon B. Johnson 

established the Blue-Ribbon National Commission on Technology, Automation, 

and Economic Progress. The commission was tasked with confronting the 

“productivity problem of that period – specifically, the problem that productivity 

                                                 
4
 A TIME magazine story of February 24, 1961 voiced its concern over the so called 

“Automation Jobless”, stating that while in the past industries had hired more people than those 
that had been put out of business, this was not the case with new industries. In consequence, 
the jobs of unskilled or semiskilled workers were bound to be eliminated by automation (Autor 
2015: 3).  
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was rising so fast it might outstrip demand for labor” (Autor 2015: 3). The 

commission ultimately concluded that employment would not be threatened by 

automation. However, it viewed the reality of technological disruption as severe 

and recommended several policies, including a guaranteed minimum income for 

families, using the government as the employer of last resort, the expansion of 

free education in community and vocational colleges, and individual financial 

sponsorships for economic development (Autor 2015: 4).  

 

In the following decades, the steady price decline in computing costs created 

strong economic incentives for businesses to substitute labor for computer 

capital. The substantial declines in clerical and administrative occupations in the 

US, between 1979 and 2009, can be viewed as a consequence of routine tasks 

being increasingly codified in computer software and performed by machines 

(Acemoglu/Autor 2011: 133). Many middle-skilled cognitive and manual tasks, 

such as book-keeping, clerical work, repetitive production, and monitoring jobs, 

can be characterized as routine tasks. Yet there are certain limits on which 

tasks can be automated using computers. These limits depend upon the ability 

of a programmer to specify a problem, to quantify the criteria for success and to 

write a set of procedures or instructions for the machine to execute 

(Acemoglu/Autor 2011: 20). Acemoglu and Autor refer to these tasks as 

procedural, routine activities. Overall, the declines in routine-intensive 

employment have resulted in an increased polarization of national labor markets 

across the globe, with high-skill employment and low-income service 

occupations expanding, accompanied by a hollowing-out of middle-income 

routine jobs (Arntz et al. 2019: 1). This is evidenced by the analysis of 

occupational polarization in the EU by Goos, Manning and Salomons (2010). 

While these developments are problematic in their own right, the concerns 

about mass unemployment due to the automation of “codifiable” tasks proved to 

be unwarranted. One of the reasons for this is that the supply of skills kept pace 

with the demand of skills over most of the twentieth century, as successive 

cohorts gained increased access to public secondary and higher education 

(Goldin/Katz 2007: 16).  
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More recently however, the technological barriers that traditionally put limits on 

the tasks that can be automated have been reduced. Computing power 

continues to rise at incredible rates, as does the amount, quality, and availability 

of data. At the same time, there have been significant breakthroughs in machine 

learning methods. Complex tasks that previously only humans could do now 

appear increasingly automatable. Recent examples include voice and image 

recognition as well as self-driving vehicles. Against this background, a new 

wave of angst has resurfaced, with researchers arguing that machines may be 

able to match or surpass humans in certain types of tasks in the near future.  

 

3. A comparison of two studies 

 

3.1 Fry, Osborne, and the occupation-based approach 

 

In short, technological progress can have two competing effects on labor. First, 

technology can substitute for labor. The consequence of this process is a 

destruction effect which forces workers to reallocate their supply of labor. 

Second, there is the capitalization effect which describes the allocation of 

capital into industries with relatively high rates of productivity, resulting in an 

expansion of employment in those industries (Fry/Osborne 2013: 3). 

Historically, the capitalization has played a predominant role. This is because 

workers have managed to adopt and acquire new skills by means of education 

(Goldin/Katz 2007: 16). Yet in light of the rapid advances in machine learning, 

driven largely by an approach called deep learning, the concern about the 

potential impact of automation on employment is growing. Machine learning, as 

defined by Brynjolfsson et al. (2018), is a 

 

sub-field of artificial intelligence (AI) that studies the question “How can we build 

computer programs that automatically improve their performance at some task through 

experience?”  

 

In addition, Brynjolfsson et al. categorize machine learning as a “general 

purpose technology” – a technology that is pervasive, improves over time, and 
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generates complementary innovation. More importantly, machine learning has 

the potential to performs certain types of tasks better than humans, particularly 

those involving image and speech recognition, natural language processing, 

and predictive analytics (Brynjolfsson et al. 2018: 43). With computerization 

entering more cognitive domains of work, the destruction effect of automation 

may become more prevalent.  As stated previously, this chapter seeks to 

analyze the Fry and Osborne study. Its purpose is to outline which aspects of 

their methodology lead to their conclusion of 47 percent of total US employment 

being at risk – i.e., automatable.  

 

Fry and Osborne build on the task model of Autor et al. (2003), which lays out a 

two-by-two matrix that distinguishes between different types of occupational 

tasks, with routine and non-routine tasks on the one axis, and manual versus 

cognitive tasks on the other (Fry/Osborne 2013: 4).5 However, computerization 

during the twentieth century was mostly confined to manual and cognitive 

routine tasks, whereas recent technological advances have allowed 

computerization to spread to domains commonly defined as non-routine (ibid.: 

16). The authors argue that the task model may not be able to predict the 

impact of computerization on employment in the twenty-first century. In order to 

quantify how recent technological progress might impact employment in the 

near future, Fry and Osborne draw upon recent developments in the 

engineering sciences, including particular advances in machine learning, data 

mining, machine vision, computational statistics and other sub-fields of artificial 

intelligence. In addition, they examine the application of machine learning 

technologies in mobile robotics, with the goal of determining the extent of 

computerization in non-routine manual and cognitive tasks. As Fry and Osborne 

explain,  

 

recent technological breakthroughs are, in large part, due to efforts to turn non-routine 

tasks into well-defined problems (Fry/Osborne 2013: 14).  

 

                                                 
5
 Tasks are defined as routine if they follow explicit rules that can be specified in computer code 

and accomplished by machines. The distinction between manual and cognitive tasks depends 
on whether a task relates to physical labor or knowledge work. The task model by Autor 
suggests that a complete substitution of labor will be confined to routine tasks (Autor 2013: 26).  
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Having large amount of data is important because it allows the performance of 

an algorithm to be evaluated and improved.6 For an algorithm to substitute for 

human labor, it must be able to manage the many contingencies that humans 

are naturally able to identify and act upon. With big data being widely available, 

machine learning algorithms are already being applied to a wide range of non-

routine cognitive tasks, such as healthcare diagnostics (e.g.: chronic care and 

cancer treatment diagnostics), financial analysis (e.g.: automated decision-

making, stock market analysis, personalized financial advice), and software 

development (e.g.: bug detection).  

 

Fry and Osborne conclude this part of their analysis by identifying a clear trend: 

computers are challenging humans in a wide range of non-routine cognitive 

tasks (ibid.: 19). The same holds true for the computerization of non-routine 

manual tasks, with improved sensors and big data offering solutions to a variety 

of engineering problems. As the costs of robotics decline and technological 

capabilities continue to expand, robots are becoming increasingly autonomous 

and can be expected to gradually replace workers in a wide range of non-

routine manual occupations.  

 

After elaborating on the application of recent technological innovations on non-

routine tasks, Fry and Osborne then proceed to derive additional dimensions 

required to understand the factors involved in determining which jobs are 

susceptible to computerization. This is achieved by identifying the technical 

problems that engineers need to solve in order for specific occupations to be 

automated. These so-called engineering bottlenecks are divided into 1) 

perception and manipulation tasks, 2) creative intelligence tasks, and 3) social 

intelligence tasks. Although Fry and Osborne argue that some of these 

engineering bottlenecks can be alleviated through the simplification of tasks, 

they concede that  

 

                                                 
6
 An example given by Fry and Osborne is handwriting recognition. In order to determine 

whether an algorithm correctly recognizes certain styles of handwriting, a large amount of data 
containing a variety of styles is required.  
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many non-routine occupations that involve complex perception and manipulation tasks, 

creative intelligence tasks, and social intelligence tasks are unlikely to be substituted by 

computer capital over the next decade or two (Fry/Osborne 2013: 27).  

 

Having identified these specific parameters, Fry and Osborne begin 

constructing their methodology, which can be summarized as follows: the 

likelihood of an occupation being automated depends on to what degree the 

three different task types are characteristic of that occupation.7 Fry and 

Osborne then proceed to categorize jobs according to different occupational 

characteristics, which they derive from O∗NET – an online service developed by 

the US Department of Labor. This database provides information on 

occupational work activities and defines the key features of an occupation, 

allowing the authors to:  

 

a) objectively rank occupations according to the mix of knowledge, skills, and abilities they 

require; and 

b) subjectively categorize them based on the variety of tasks they involve (Fry/Osborne 

2013: 28).  

 

In cooperation with machine learning experts, they “subjectively hand-label” 70 

occupations8 by “eyeballing” the O∗NET job descriptions and answering the 

question “Can the tasks of this job be sufficiently specified, conditional on the 

availability of big data, to be performed by state of the art computer-controlled 

equipment [sic!]” (ibid.: 30). The automatability of a wide range of tasks within a 

given occupation is examined, with occupations being assigned a 1 if they are 

categorized as automatable and a 0 if not. The majority of jobs categorized by 

this method are assigned either a very high or a very low automatability (see: 

Appendix, Table 1).  

 

                                                 
7
 For example, a dishwasher requires a lower degree of social intelligence than a public relation 

specialist, rendering his occupation more susceptible to automation.  
 
8
 The specific occupations were chosen based on how confident the experts were in their 

labelling. The experts rated their confidence in the classification of these 70 occupations as 
“high”.  
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The lack of a standardized categorization system is attributable to the fact that 

the job descriptions in the O∗NET database are particular to each occupation. 

The subjective labelling of these occupations represents an improvement on 

previous attempts to create objective rankings, which yielded some 

questionable results.9 Fry and Osborne proceed to extrapolate this subjective 

classification for the remaining 632 occupations. First, they compare nine 

objective attributes of a certain occupation, which are related to engineering 

bottlenecks (e.g.: manual dexterity, social perceptiveness), to the subjective 

classifications of the 70 original occupations. Second, a probabilistic model is 

used to examine the relation between bottleneck-related attributes – i.e., 

automatability indicators – and the automatability of any given occupation. 

Finally, they match this information to the number of workers in each 

occupation. 

 

Fry and Osborne show that computerization may extend to non-routine tasks in 

the near future, under the condition that a given task is not subject to 

engineering bottlenecks. This implies that certain non-routine cognitive and 

manual tasks, such as legal writing and truck driving, are susceptible to 

automation, while others, which require creative and social intelligence, are not 

(ibid.: 43). The findings also distinguish between different levels of risk: high, 

medium, and low.10 Their computations place 47 percent of total US 

employment in the “high risk category” – are i.e., “jobs that potentially 

automatable over some unspecified number of years, maybe a decade or two” 

(ibid.: 44).  

 

3.2 Arntz et al. and the task-based approach 

 

                                                 
9
 In 2009, Blinder and Krueger utilized a similar methodology in order to determine the 

“offshorability” of certain occupations. However, the attempt to create a ranking based on 
objective task characteristics yielded problematic results, as lawyers and judges were ranked as 
more “offshorable” than telephone operators and billing clerks.  
 
10

 To be categorized as “high risk” at least 70 percent of the tasks performed by a given 
occupation have to be automatable.  
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In their study on the risk of automation in OECD countries, Arntz et al. utilize a 

so-called “task-based approach” (Arntz et al. 2016: 12). This approach takes 

into account that the same occupations often have very different task structures, 

implying that automation will affect workers in the same occupations differently. 

It is based on a key insight by Autor, Levy, and Murnane (2003) who stipulate 

that occupations can be viewed as a bundle of tasks. As Fry and Osborne 

correctly identify, the impact of machine learning on a certain job is a function of 

its applicability on specific activities. The wide variety of tasks that are bundled 

within occupation therefore implies that automation will impact those tasks 

differently. Few occupations consist of completely automatable bundles of 

tasks.11 Arntz et al. argue that the impact of computerization on workers will not 

necessarily depend on the occupation but on the specific tasks. In addition, 

Arntz et al. address the difficulty in applying the O∗NET data to other countries. 

They therefore utilize data from the Programme for the International 

Assessment of Adult Competencies (PIAAC) – a unique collection of individual 

survey data containing detailed information on skills, occupation-related 

information, occupation-tasks, and competencies (ibid.). This individual level 

data allows the authors to take two important factors into consideration: a) the 

reliability of occupational descriptions in predicting workers’ actual tasks, and b) 

the comparability of occupations across countries. Arntz et al. then use a 

statistical model that links the automatability indicators of Fry and Osborne to 

the occupational tasks derived from the PIAAC data. This procedure rests on 

the premise that occupations  

 

with larger shares of automatable tasks are more exposed to automatability than 

[occupations] with larger shares of non-automatable tasks (Arntz et al. 2016: 13).  

 

The distinction is important because, as mentioned previously, the public 

debate surrounding the substitution of labor through capital often assumes that 

occupations will be completely automatable. However, as Arntz et al. show, 

workers in occupations at “high risk” often perform tasks which are difficult to 

automate. The challenges facing automation arise from the engineering 

                                                 
11

 Autor et. al (2003) give the following example: In the 1970s and in the US, both truck driving 
and double entry bookkeeping were tasks performed by a single occupation. Today, computers 
are responsible for a large portion of the routine bookkeeping but do virtually no truck driving.  
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bottlenecks as defined by Fry and Osborne. Overall, this approach is less 

restrictive because rather than assuming that broad occupational descriptions, 

as found in the O∗NET data, apply to all occupations, it looks at specific tasks 

within an occupation, with a focus on individual job descriptions based on 

survey data. In addition, it takes into account that occupational tasks in, for 

example, Germany may differ from those in the US. 

 

Regarding the US labor-market, Arntz et al. conclude that a) the automatability 

of jobs with high educational requirements and jobs that require cooperation 

with other employees is lower than the automatability of jobs with a large portion 

of tasks that are related to exchanging information, selling or using fingers and 

hands; that b) only 9 percent of total US employment face a high risk of 

automatability; and that c) using individual level information leads to significantly 

lower predictions of occupational automatability as well as less extreme values 

in the distribution of automatability (see: Appendix, Table 2).  

 

Regarding Germany’s labor market, Arntz et al. find that 12 percent of 

occupations can be placed in a “high risk” category (Arntz et al. 2016: 15). 

Similar numbers can be found in a study conducted by Dengler and Matthes 

(2015). Their methodology introduces a “substitution-potential” which 

categorizes the tasks necessarily – not sufficiently – required to perform the 

occupation as either “substitutable” or “not-substitutable”. The number of 

substitutable tasks is then divided by the total number of necessary tasks for 

any given occupation. The influence of a specific occupation on the aggregate 

automatability of the entire labor-market is weighted according to the number of 

employees employed in that occupation. Dengler and Matthes place 15 percent 

of all jobs in Germany in a “at risk” category and, similar to Arntz et al., find a 

lower polarization in the distribution of automatability (Dengler/Matthes 2015: 3). 

While they find that the substitution-potential decreases for jobs with higher 

educational requirements, there are virtually no differences in the automatability 

of occupations without vocational training requirements compared to 

occupations that require at least two years of vocational training (ibid.: 4). The 

reason for this is that many of the tasks performed by workers without 
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vocational training, such as washing the bodies of nursing home patients, are 

difficult to translate into an algorithm.  

 

An example illustrates the explanatory power of the task-based approach: 

According to Fry and Osborne, retail salespersons face an automation potential 

of 92 percent. This is because Fry and Osborne view only a limited set of 

bottleneck-tasks of highly automatable jobs and apply these to the average task 

descriptions of other occupations. During this process, the wide range of tasks 

actually performed by individual workers is reduced to those performed by all 

workers on average. However, based on the PIAAC data only 4 percent of the 

people working in that occupation can perform their jobs without group work or 

face-to-face interactions. Group work or face-to-face interactions fall under the 

bottleneck-category of social intelligence, meaning that this aspect of the 

occupation is difficult to computerize. 

 

The second part of the analysis by Arntz et al. is dedicated to the issue of 

comparing occupations in different countries. Their data suggests that 

individuals in the same occupation perform different tasks depending on which 

country they work in. Two explanations are given: a) national differences in the 

organization of the workplace, and b) differences in the adoption of new 

technologies (Arntz et al. 2016: 17). For example, occupations in country A may 

rely less on interpersonal cooperation and face-to-face interactions than country 

B. In certain countries, such as Italy and Germany, occupations are 

characterized by a lower share of communicative tasks, whereas occupations in 

the US and UK tend to be more communicative and therefore less susceptible 

to automation. Assuming that there are little to no differences in the workplace 

organization of both countries, the automatability of occupations in country A 

might still be higher than in country B, because country A invests more 

resources in the research and implementation of new automation technologies. 

This also implies that occupation in countries which already exhibit high levels 

of automation have a lower potential for automation.  

 

In sum, the findings by Arntz et al. show that the potentials for automation are 

often overestimated by occupational-level studies. Not only do different 
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approaches lead to significantly different conclusions about the automatability of 

jobs, but there are also factors that make cross-country comparisons difficult. 

While one could argue that future advancements in artificial intelligence might 

lead to solutions for the current engineering bottlenecks that are preventing 

non-routine tasks from being automated, these predictions are likely to be of a 

more speculative nature. The problem with the article by David Precht, which 

was mentioned in the introduction, is that it misleads its readers and does not 

fully encapsulate the ongoing debate. It contributes to public fears rather than 

providing a more nuanced picture of how automation will affect employment in 

the future.  

 

4. Predicting the effect of automation on employment 

 

There are still more caveats that need to be taken into consideration when 

predicting how automation will affect employment. The estimated automation 

potentials by Fry/Osborne and Arntz et al. only capture whether an occupation, 

given its current task structure, could theoretically be replaced by a machine or 

not. There are a few additional reasons why automation potentials should not 

be equated to actual job losses. For the sake of brevity, this chapter will discuss 

the following reasons:  

 

a) technological diffusion (the gap between the potential and the actual 

implementation of a certain technology), and 

b) induced job creation (the creation of new jobs due to technological 

changes). 

 

4.1 Technological diffusion 

 

Solow’s Paradox postulates that the effect of the computer age on the economy 

can be observed everywhere but in the productivity statistics (Triplett 1998: 1).  

According to Brynjolfsson et al. (2019), we are currently experiencing a 

comparable situation with newer technologies. On the one hand, there are 

astonishing examples of new transformative technologies, such as artificial 
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intelligence, which already surpass humans in selected tasks and could greatly 

increase productivity. However, over the past decade, productivity growth in 

most OECD countries has decelerated significantly (Brynjolfsson et al. 2019: 1). 

Economic gains have been unevenly distributed, leaving large segments of the 

working population in advanced economies with stagnating incomes, declining 

metrics of well-being, and good cause for concern. Brynjolfsson et al. argue that 

the main contributor to this contradiction is the slow implementation of AI 

technologies, causing the adoption of AI to severely lag behind its technological 

capabilities. The slow diffusion of AI into the general economy can be explained 

when viewing AI as a General-Purpose Technology (GPT). GPTs can be 

characterized as follows:  

 

a) they are pervasive (i.e., the have the ability to spread to most 

sectors), 

b) they improve over time, and 

c) they enhance the possibilities for further technological innovations, 

allowing new products and processes to be invented and produced. 

 

GPTs often diffuse over longer periods of time. For example, computers took 25 

years to “reach their long-run plateau of 5% of nonresidential equipment capital” 

(Arntz et al. 2019: 7). Other examples include the steam engine, electricity, and 

the internal combustion engine. What all these technologies have in common is 

that they achieved widespread productivity gains and adopted only once a 

sufficient stock of new technology is built and other necessary complementary 

investments have been made (Brynjolfsson et al. 2019: 10). Furthermore, firms 

can be reluctant to adopt such technologies, since GPTs tend to be costly, take 

time to implement, and their success and impact on productivity growth is 

difficult to measure. Arntz et al. (2019) find that older technologies will still 

dominate the production processes in German firms, despite the shares of 

capital based 4.0-technologies having roughly doubled over the past decades. 

In fact, many firms are still upgrading from 1.0/2.0 to 3.0 technologies,12 rather 

than introducing newer ones (Arntz et al. 2019: 7). 

                                                 
12

 Arntz et al. distinguish between 1.0/2.0-technologies, which are “manually controlled 
technologies that are either functioning mechanically or electrically, but are not IT supported”, 
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There are several factors that impact the speed at which 4.0-technologies 

diffuse into the general economy. First, the speed of diffusion hinges on 

whether automation technologies can execute select tasks at lower costs than 

workers. This highlights the, perhaps obvious, fact that the profitability of new 

technologies is more important to firms than theoretical automation potentials. 

Hence, the speed of diffusion in the future will depend on the cost of labor and 

wage setting institutions such as unions and minimum wages. Labor at the 

lower end of the wage-scale may therefore be shielded from automation more 

than workers in the middle of the wage distribution (Arntz et al. 2019: 8).  

 

Second, additional complementary investments are required to make GPTs 

profitable, such as organizational restructuring and the acquisition of new 

workers with the right skills (Brynjolfsson et al. 2018: 6). A shortage of qualified 

personal that can handle 4.0-technologies may slow the introduction of new 

technologies. These risks form a major barrier to the implementation of 4.0 

technologies, as is evidenced by the findings of Arntz et al. (2018). They find 

that 65% of German firms were reluctant to invest in 4.0-technologies between 

2011 and 2016 because of these considerations. 

 

Last but not least, there are important ethical considerations that already limit 

the speed of technological innovation. A well-known example is the autonomous 

car, which bears numerous legal obstacles regarding, for instance, the question 

of liability in case of an accident. 

 

In sum, these two stories – namely the simultaneous advancement and the slow 

implementation of 4.0-technologies – are not contradictory. Instead, they 

suggest that our economies are entering a phase of transition. However, it will 

require a combined societal effort to realize the benefits of AI through the 

restructuring of our production processes. Furthermore, it remains unclear how 

                                                                                                                                               

3.0-technologies, which are technologies that are supported by computers and software 
algorithms, and 4.0-technologies, which are fully IT-integrated and require intervention only in 
the case of failures (Arntz et al. 2019: 7). 
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labor, new production processes, and business models might complement new 

AI technologies in the future.  

 

4.2 Induced job creation 

 

The introduction of automation technologies does to some extent replace 

workers. However, there are certain compensating mechanisms that counteract 

the initial displacement effect. First, there is the productivity effect. An analysis 

of Acemoglu and Restrepo (2018) stresses the central role of the productivity 

effect on both wages and employment. According to their observations, the 

technologies that may reduce the demand for labor are not those that are highly 

productive, but rather those that are “just productive enough to be adopted” 

(Acemoglu/Restrepo 2018: 9). Automating tasks makes firms more productive, 

reducing costs and prices, and raises the quality of existing products or enables 

new types of products or services to be made. These effects lead to an increase 

in demand and production, with the economy expanding and the demand for 

labor rising in sectors that have not adopted new technologies (multiplier effect). 

On a microeconomic level, the productivity effect can cause less productive 

companies to go out of business and more productive companies to grow, 

ultimately resulting in no net change in employment. Second, there is the 

reinstatement effect. This effect impacts the labor market in two mutually 

complementary ways: a) new technologies allow new tasks to evolve in which 

labor has a comparative advantage, and b) the displacement of workers 

increases the amount of labor, allowing new, more productive tasks to be 

performed (ibid.).  

 

Ultimately, the net effect of automation on employment remains an empirical 

question. A study by Gartner und Stüber (2019) on the effect of automation on 

the German labor-market finds that between 1976 and 2017, the loss of jobs 

due to technological change was fully compensated by the creation of new jobs. 

Despite the increased automation of many tasks in the German industry, new 

tasks have sprung up either in the same economic sector or in other non-related 

economic sectors (Gartner/Stüber 2019: 4). In fact, they find that the rate at 
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which old occupations are being replaced by new ones has decreased since 

2005 in relation to the 1990s, suggesting that the speed at which job loss is 

occurring has slowed down. However, they also find that workers are impacted 

differently depending on their educational attainment. Low-skilled workers are 

particularly exposed to automation and the demand for low-skilled labor has 

been steadily declining in Germany. Highly educated earners are least exposed 

to being potentially automatable and the demand for high-skilled labor has 

increased in Germany (ibid.: 5). Further differentiating the results, the number of 

middle-income occupations requiring vocational training has slightly declined 

and the turnover-rate at which low-skilled jobs are replaced by other low-skilled 

jobs is higher than those of more skill-based occupations. Gartner and Stüber 

conclude  

that technology-induced unemployment is largely caused by mismatches in both 

the educational attainment of workers and the educational requirements of the 

new occupations, suggesting that policies which focus on retraining and 

education will becoming increasingly important in the future.  

 

5. Conclusion 

 

The findings of this paper provide a more nuanced context for the future of 

employment and 4.0-technologies. The first chapter has shown that concerns 

about technological unemployment are not new and that while displacement is a 

bitter reality for those affected by it, the fears of mass automation have proven 

to be unwarranted in the past. The second chapter argues that this might not 

hold true for the future, that the differences in the calculations of automation 

potentials can be explained by different methodologies, and that automation 

potentials tend to be overestimated in public debates. The third chapter showed 

that there are a number of factors that influence the implementation of 4.0-

technologies and predictions of technology-induced unemployment. Automation 

cannot be equated to the substitution of labor with capital. Instead, new 

transformative technologies may complement labor in a number of ways, 

freeing up labor, creating new jobs, and increasing the demand for high-skilled 

labor. A final aspect that should be considered is that we as a society can 



 20

 

influence these developments. We may have strong preferences for the 

continued provision of certain tasks and services by humans, such as nursing or 

caring for the elderly. Hence, even if automation will increasingly complement 

certain occupations in the future, humans will preserve their comparative 

advantage in performing certain tasks.  

 

 

 

 

6. Appendix 

 

Table 1 (p. 10):   
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Source: Frey, Carl Benedikt/Osborne, Michael A. (2013): The Future of Employment: How 

Susceptible Are Jobs to Computerisation?, online at: 

https://www.oxfordmartin.ox.ac.uk/downloads/academic/The_Future_of_Employment.pdf, 

September 2013, [accessed: 13.2.2021] 

 

 

 

 

Table 2 (p. 13):  
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Source: Arntz, Melanie/Gregory, Terry/Zierahn, Ulrich (2016): The Risk of Automation for Jobs 

in OECD Countries: A Comparative Analysis, OECD Publishing, Paris.  
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